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Abstract—This paper tackles the problem of real-time optimal4
control of traffic flow in a freeway network deployed with co-5
ordinated and integrated traffic controllers. One promising ap-6
proach to this problem is casting the underlying dynamic control7
problem in a model predictive framework. The challenge is that8
the resulting optimization problem is computationally intractable9
for online applications in a network with a large number of10
controllers. In this paper, a game-theoretic approach with distrib-11
uted controllers is proposed to address the foregoing issue. The12
efficiency of the proposed method is tested for a coordinated ramp13
metering and variable-speed limit control applied to a stretch of14
freeway network. The parallel nature of the optimization algo-15
rithm makes it suitable for solving large-scale problems with high16
accuracy. The speed and accuracy of the proposed solution ap-17
proach are examined and compared with that of the conventional18
optimization method in a case study to demonstrate its superior19
performance.20

Index Terms—Distributed controllers, game theory, model pre-21
dictive control (MPC), parallel optimization, ramp metering,22
speed limit control.23

I. INTRODUCTION24

S EVERAL methods have been developed to improve the25

performance of freeway networks. Among them, control26

strategies such as ramp metering, speed limits, and route rec-27

ommendation are recognized as the most effective ways to28

relieve the freeway traffic congestion. Furthermore, the latest29

advances in computers and communication technologies have30

made it feasible to implement network-wide multiple traffic31

control systems, as opposed to single local control schemes.32

Intuitively, for a given traffic network, more controllers could33

result in better performance. Nevertheless, for a network-34

wide implementation, the amount of data and the computa-35

tional complexity of the underlying control algorithms quickly36
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increase as the number of control measures increases. There- 37

fore, in general, there exists a tradeoff between the quality 38

of the control method and the amount of information and 39

computational resources required to achieve that quality. 40

Traffic control strategies can generally be classified into three 41

categories. The first category consists of offline or open-loop 42

strategies, in which only historical data are used in deriving 43

the controls. A good example of open-loop strategies is the 44

fixed-time ramp metering [1], in which the control strategies 45

are predetermined for a particular time of day by solving a 46

linear programming problem based on historical demand. A 47

more sophisticated strategy in this category is the nonlinear 48

optimal ramp-metering method [2], which attempts to minimize 49

an objective function for the whole network. One of the major 50

drawbacks of this control strategy is its high sensitivity to 51

inaccuracies in the predicted traffic demands, traffic patterns, 52

and incidents. 53

The second category contains the reactive or close-loop 54

methods, which derive the control decisions based on real- 55

time data from traffic sensors such as inductive loop detectors. 56

Generally, this type of controller aims at keeping the freeway 57

conditions as close to a prespecified target state as possible. 58

Reactive ramp metering algorithms such as demand–capacity 59

strategy [3] and ALINEA [4] are popular in this category. 60

These controls do not incorporate any systematic optimization 61

procedure to directly minimize the objective function and are 62

mostly heuristic in nature, and their performance depends on 63

the appropriate selection of the control parameters. Reference 64

[5] provides a comprehensive review of the various ramp- 65

metering methods in these two categories. 66

The third category includes control strategies commonly 67

called proactive or predictive control methods that make use 68

of both offline and online information to predict the future state 69

of the underlying network and then control the system accord- 70

ingly. The goal of these strategies is to find the optimal control 71

over a given horizon based on a predefined objective function. 72

It operates in a feedback adaptive fashion by which it takes new 73

observed states and disturbances into account through a predic- 74

tion model. These control methods are commonly referred to 75

as receding horizon control or model predictive control (MPC). 76

The MPC has been applied in ramp metering [6], variable speed 77

limits [7], combined ramp metering and variable speed limit 78

control [8], and combined dynamic route guidance and ramp- 79

metering control [9]. 80

Despite the obvious advantages of online strategies with opti- 81

mization frameworks, such as the MPC, they have the drawback 82

that their computational complexity quickly increases by the 83

number of control inputs. This is particularly problematic for 84
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traffic-control systems where a closed-form optimal control85

signal may not explicitly be derived, and for each control86

interval, an online nonlinear programming technique must be87

implemented. For instance, Di Febbraro et al. [10] proposed to88

apply artificial neural networks as an offline control for optimal89

freeway traffic control instead of using online optimization for90

their receding horizon approach because they found that the91

dynamics of the system change faster than the speed of the92

computing system. In another case [8], it was suggested that93

a hierarchical control scheme be tested that was decomposing94

the large traffic network into small subnetworks with minimum95

interaction and then solving each problem locally. In [11], a96

hierarchical control structure is proposed to the coordinated97

ramp-metering problem arising in the Amesterdam ring road.98

The problem was formulated with a nonlinear macroscopic99

traffic model. The solution method proposed in that work100

was claimed to be fast enough for real-time implementation;101

however, it is unknown whether this solution approach could be102

extended to solve problems with more sophisticated controllers103

(e.g., speed limits) and input/state constraints. Despite the com-104

putational challenges, the potential of online control strategies105

like the MPC is very promising, and the remaining challenge is106

to develop a solution method that can feasibly be implemented107

in a real-world setting.108

In this paper, we consider the problem of applying the MPC109

control framework to the congestion control problem of a free-110

way network equipped with ramp metering and variable speed111

limits. A solution algorithm from game theory is proposed to112

find the optimal solutions for the optimization part of the MPC,113

which has the potential to make the real-time congestion control114

computationally tractable even for large traffic networks. A115

macroscopic traffic flow model is used as the prediction model116

of the real traffic system. This paper is organized as follows: In117

Section II, the problem description is presented. In Section III,118

the basics of the MPC are introduced. In Section IV, the traffic119

flow model (prediction model) is introduced. In Section V, the120

problem formulation is proposed. The game-theoretic approach121

is explained in Section VI. The proposed method is applied to122

a benchmark problem in Section VII. Finally, conclusions are123

stated in Section VIII.124

II. INTEGRATED AND COORDINATED CONTROL PROBLEM125

We consider the problem of finding the best control settings126

for a group of controllers in a traffic network consisting of a127

set of ramp meters and variable speed limit signs. The control128

objective is to minimize the system-wide total time spent (TTS)129

by all vehicles in the freeway network. Ramp metering is the130

most widely used freeway traffic-control method around the131

world. However, this method will lose its effectiveness as the132

congestion level increases. Changing the speed limit through133

variable speed limit signs could partially address this issue134

and improve the effectiveness of the ramp-metering system,135

as shown in [8]. The speed limiters located just before the136

bottleneck on-ramp can help reduce the outflow of controlled137

segments so that there will be some space left to accommodate138

the traffic from the on-ramp. This way, the traffic flow in the139

on-ramp area could be kept near the capacity, and the duration140

of breakdowns could be reduced. Therefore, a combination of 141

ramp metering and variable speed limit control has the potential 142

to achieve better performance than when they are implanted 143

separately. 144

Coordination among different controllers that work together 145

is an essential task. For instance, a controller at one spot of a 146

freeway network may mitigate a local congestion problem but 147

may induce congestion at another location on the freeway. Be- 148

sides using the global data, the prediction of network evolution 149

could be valuable since the effect of control can be seen after a 150

time delay. 151

As the number of ramp meters and speed control limits 152

increases, the size of the solution vector grows rapidly. For 153

example, to find an optimal solution for N controllers including 154

ramp meters and speed limiters using the MPC approach, 155

(which will be explained in the next section), every controller 156

must find C optimal values at each control time step. There- 157

fore, the solution to the optimal control problem is an N × C 158

variable matrix. If the problem is formulated as an integer- 159

programming problem with S discrete permissible values for 160

each N × C variable matrix, then SN×C values have to be 161

enumerated and evaluated to find the global optimal solution. 162

Although the problem could also be formulated as a continuous 163

nonlinear programming problem, the resulting problem is likely 164

to be nonconvex in nature in that finding the global optimum so- 165

lution would require an exhaustive search of the whole solution 166

space. 167

III. MODEL PREDICTIVE CONTROL 168

The MPC is an advanced control framework that was orig- 169

inally developed for industrial process control (see [12] and 170

[13]). The MPC is a distinguished control model in terms of 171

its capability to deal with various system constraints in an 172

optimization framework. The core idea of the MPC is its use 173

of a dynamic model to predict the future behavior of the system 174

at each optimization step. The goal is to find the desired control 175

inputs such that a predefined objective function is minimized or 176

maximized. In this paper, we have utilized MPC as an online 177

method to optimally control coordination of speed limits and 178

ramp metering with the objective of minimizing the TTS with 179

system states being predicted by a macroscopic freeway model. 180

The following section provides a brief description of the MPC 181

framework introduced in [14]. 182

We consider a control system with N controllers over a 183

specific time horizon. The time horizon is divided into P 184

large control intervals, each subdivided into M small inter- 185

vals (called system simulation steps). It is assumed that over 186

each control interval, the control variables are kept the same, 187

whereas the system state changes by the simulation step. Let 188

kc be the index for large intervals (kc = 1, 2, . . . , P ) and k for 189

all the subintervals (k = 1, 2 . . . , MP ). The transition of the 190

system state can be expressed as follows: 191

x(k + 1) = f (x(k),u(k),d(k))

where x(k), u(k), and d(k) are vectors representing the system 192

state, the control input, and the disturbance at time k. At each 193
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control step kc, a new optimization is performed to compute the194

optimal control decisions, e.g.,195

u(kc) =

⎡
⎢⎢⎣

u1(kc) u1(kc + 1) · · · u1(kc + P − 1)
...

uN (kc) uN (kc + 1) · · · uN (kc + P − 1)

⎤
⎥⎥⎦

for the time period of [1.2, . . . , P ], in which P is the prediction196

horizon.197

To reduce the computational complexity, a control hori-198

zon C(C < P ) is usually defined to represent the time199

horizon over which the control signal is considered to be200

fixed, i.e.,201

u(kc) = u(C − 1) for kc > C.

Therefore, for N controllers, the N × C vector of optimal202

controls would be203

u∗(kc) =

⎡
⎢⎢⎣

u∗
1(kc) u∗

1(kc + 1) · · · u∗
1(kc + C − 1)

...

u∗
N (kc) u∗

N (kc + 1) · · · u∗
N (kc + C − 1)

⎤
⎥⎥⎦ .

Only the first optimal control signal u∗
i (kc), i = 1, 2, . . . , N204

(first column) is applied to the real system, and after shifting205

the prediction and control horizon one step forward with the206

current observed states of the real system to the model, the207

process is repeated. This feedback is necessary to correct any208

prediction errors and system disturbances that may deviate209

from model prediction. Since we have to work with a non-210

linear system (traffic model), in each control time step kc, a211

nonlinear programming has to be solved to find the N × C212

optimal solutions before reaching the next control time step213

(kc + 1).214

It should be pointed out that the control parameters P and C215

need to be selected appropriately. Choosing a large prediction216

and control horizon will increase the computational demands217

due to the increased number of optimization variables. On the218

other hand, using a short prediction and control horizon may219

turn the control strategy into a reactive model and thus degrade220

its effectiveness.221

In the following sections, we introduce how the system state222

equations are modeled using a dynamic traffic flow model and223

how the MPC can be cast into a game-theoretical framework224

and solved efficiently.225

IV. TRAFFIC-FLOW MODEL226

The traffic-flow model adopted here is the destination in-227

dependent METANET model (see [2] for more details) to-228

gether with the extended model for speed limits presented229

in [8].230

The METANET is a macroscopic traffic model that is dis-231

crete in both space and time. The model represents the network232

by a directed graph with a set of links corresponding to freeway233

Fig. 1. METANET model. Link and node configuration.

stretches and a set of nodes, as illustrated in Fig. 1. Each link 234

has uniform characteristics i.e., no on-ramp or off-ramp and 235

no major changes in geometry. The nodes of the graph are 236

placed between links, where the major change in road geometry 237

occurs, such as on-ramps and off-ramps. A freeway link (m) 238

is divided into (Nm) segments (indexed by i) of length (lm,i) 239

and by the number of lanes (nm). Each segment (i) of link 240

(m) at time instant t = kT , where T is the time step used for 241

simulation, and k = 0, . . . ,K, is macroscopically characterized 242

by its traffic density ρm,i(k) (in vehicles per lane per kilometer), 243

mean speed vm,i(k) (in kilometers per hour), and traffic volume 244

qm,i(k) (in vehicles per hour). Table I describes the notations 245

related to the METANET model. 246

The traffic stream models that capture the evolution of traf- 247

fic on each segment at each time step are shown in (1)–(8) 248

(see Table II). The node equations that represent the relation 249

between connected links are given in (9)–(12) (see Table III), 250

which show how the entering traffic flow to a node is distributed 251

among the emanating links. 252

Using the aforementioned equations, the nonlinear traffic 253

dynamics can be expressed as follows: 254

x(k + 1) = f (x(k),u(k),d(k)) (13)

where x(k) is the state vector of the system, that is, flow rate 255

(qm,i(k)), speed (vm,i(k)), density (ρm,i(k)), and queue length 256

of origins wo(k); u(k) is the vector of control inputs, including 257

the ramp metering rates and the speed limits; and d(k) is the 258

disturbance vector at simulation step k. 259

Based on x(k), u(k), and d(k), the future evolution of 260

the traffic system [x̂(k + 1), . . . , x̂(k + MP − 1)] can be pre- 261

dicted by the METANET model. 262

V. PROBLEM FORMULATION 263

With the definitions and system state equations introduced 264

in the previous section, we can now present the formula- 265

tion of the MPC optimization problem. The optimal con- 266

trol problem includes the following two sets of decision 267

variables: 268

1) vi(j): variable speed limits for j ∈ [k, . . . , k + C − 1] 269

and i ∈ Ispeed, where Ispeed is the set of speed limits that 270

are presented in the freeway network; 271

2) ro(j): ramp-metering rates for j ∈ [k, . . . , k + C − 1] 272

and o ∈ Oramp, where Oramp is the set of controlled on- 273

ramps where ramp metering is presented. 274
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TABLE I
NOTATIONS USED IN THE METANET MODEL

The objective function used in this paper is the TTS spent by275

all vehicles, as defined in276

TTS = J(v, r)

= T

k+P−1∑
j=k

⎧⎨
⎩

∑
m,i

ρm,i(j)lm,jnm +
∑

o

wo(j)

⎫⎬
⎭

+
k+P−1∑

j=k

⎧⎨
⎩αramp

∑
o∈Oramp

(ro(j) − ro(j − 1))2

+ αspeed

∑
i∈Ispeed

(
vi(j) − vi(j − 1)

vfree

)2
⎫⎬
⎭

+ αqueue

∑
o∈Oramp

(max(wo − wmax))
2 . (14)

The first two terms in (14) correspond to the main stream 277

and the origins’ queues, respectively. The second and third 278

terms, which are weighted by nonnegative weighting fac- 279

tors, enable the control strategy to penalize abrupt changes 280

in the ramp metering and speed-limit-control decisions, and 281

the last term with a nonnegative weighting factor penalizes 282

queue lengths larger than the on-ramp capacity for keep- 283

ing the queue lengths within the permissible limit of the 284

on-ramps. 285

The MPC optimization problem can therefore be formulated 286

as follows in an abbreviated form: 287

min {J(v, r) : v ∈ V , r ∈ R}

s.t. Equations (1)–(12) (15)

where for N1 speed limits and N2 ramp meters, v(N1 × 288

C) and r(N2 × C) are decision variables, respectively, 289

(N1 + N2 = N), and V × R is the feasible search space. We 290
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TABLE II
LINK EQUATIONS AND DESCRIPTIONS

TABLE III
NODE EQUATIONS AND DESCRIPTIONS

call the whole decision variable vector u(N × C), which is as291

follows:292

u(kc) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1(kc) v1(kc + 1) · · · v1(kc + C − 1)
...

vN1(kc) vN1(kc + 1) · · · vN1(kc + C − 1)
r1(kc) r1(kc + 1) · · · r1(kc + C − 1)

...
rN2(kc) rN2(kc + 1) · · · rN2(kc + C − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Because of the nonlinearity of the traffic system states (1)–(12)293

and the objective function, this problem is a nonlinear pro-294

gramming with N × C decision variables. The problem is com- 295

monly solved using sequential quadratic programming (SQP) 296

algorithm [8]. However, the SQP algorithm is viable only for 297

small problems, and its optimality is not guaranteed. Therefore, 298

to find a sufficiently good solution in a reasonable time for 299

this problem, we apply the game theory that has successfully 300

been applied to solve large-size optimization problems in other 301

fields. 302

VI. GAME-THEORETIC APPROACH 303

The game theory was first introduced in the economy to 304

find the market equilibrium when multiple firms compete with 305
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each other to sell or buy some goods. Game theory studies306

how rational decision makers (players) choose their strategies307

from the sets of decisions that depend on the strategies of308

other players. In other words, each player has a payoff function309

that is affected by the strategy of the player itself and the310

strategies of other players. There are two types of strategies311

defined in game theory: 1) If a player has a dominant strategy312

or knows what his/her opponent will do in the next step, then313

he/she could take a strategy with probability 1, which is called314

pure strategy. 2) However, in incomplete information games315

where players do not have dominant strategies or are not sure316

about the next step decisions of their rivals, they may assign317

different probabilities to their own and their rivals’ decision318

sets, and their strategy vectors are called mixed strategies319

(for more details regarding game theory and applications, see320

[15] and [16]).321

The basic idea of using game theory in this paper for freeway322

optimal traffic control is to decompose the whole optimiza-323

tion problem into a number of suboptimization problems with324

smaller dimensions and to solve them individually but in a325

coordinated way. This is similar to turning the optimization326

problem into a sequential and coordinated game that is played327

by a number of players with identical payoffs. In our case, each328

of the N controllers in the traffic network is considered as a329

player in a game, and the TTS of all vehicles in the network is330

considered the objective function of all the players. Therefore,331

the optimal coordination of the ramp metering and variable332

speed limits is presented as a game of identical interests.333

Since the players (traffic controllers) decide simultaneously334

and try to chose their best strategies in response to the pre-335

dicted strategies of their rivals (other network controllers), the336

solution vector of such game represents a state called Nash337

equilibrium, in which the players cannot improve their payoffs338

by changing their strategies unilaterally. The Nash equilibrium339

solution can be found through a well-known algorithm called340

fictitious play (FP) [17]. The FP is an interactive process in341

which the players find their best strategies by predicting the342

rivals’ strategies based on the probability distributions of their343

past decisions. In general, the FP is not guaranteed to converge344

to the Nash equilibrium; however, it does converge to the Nash345

equilibrium in games of identical interest or common objective346

(in our case TTS) [18]. Virtually, the optimization problems347

may be viewed as a game of identical objectives in which the348

Nash solution has some optimality properties; as a result, the349

FP has recently become increasingly popular as an optimiza-350

tion tool.351

The classical form of FP is computationally extensive in352

practice. Reference [19] proposed a modified form of it called353

sample FP (SFP) that is similar to the original FP with a dif-354

ference that the best strategies are computed against a random355

sample from the history of the past decisions of the rivals356

instead of the predicted decisions based on their probability357

distributions. The SFP algorithm is useful to solve the prob-358

lem of form (15), particularly when the objective function is359

evaluated through a black-box module requiring significant360

computational efforts for each function evaluation similar to361

our case (see [19] for more details). In the SFP method, each362

player finds its best strategy by assuming that other players363

Fig. 2. Schematic diagram of MPC with SFP optimization method.

play known strategies drawn randomly from the history of their 364

past plays. Therefore, players learn other players’ strategies 365

iteratively. The convergence of the SFP with the increasing 366

number of iterations has also been proven in [19]. The SFP 367

algorithm has been applied for solving the dynamic traffic- 368

assignment problem [20], the communication protocol design 369

[21], and the signalized intersection problem [22]. 370

The SFP algorithm has the following steps, as reported 371

in [22]: 372

1) Initialization: A set of initial strategies is randomly cho- 373

sen for each player and stored in the history. 374

2) Sampling: A strategy arbitrarily drawn from the history 375

of plays for each player with equal probability. 376

3) Best reply: Each player computes his/her best reply or 377

strategy, assuming that other players play the strategies 378

drawn in the previous step. 379

4) Store: The best replies obtained in Step 3 are stored in the 380

history of plays. 381

5) Stop Condition: Check whether the stopping criterion 382

is met (for example, if the solution vector has reached 383

the steady-state Nash equilibrium); if not, then go to 384

Step 2. 385

The most important feature of the SFP algorithm is that the 386

best-reply computation can be done in parallel for all players 387

simultaneously. This makes the algorithm feasible for parallel 388

implementation, that is, the N , C-dimensional optimization 389

problems can be solved in parallel. It is also possible to decom- 390

pose the problem into much smaller subproblems by assuming 391

the C control signal of each controller as an individual player. 392

Accordingly, we would have N × C players, each with a 1-D 393

optimization problem. We omitted this configuration because 394

in this scheme the divergence time associated with N × C 395

players might have become problematic as the number of con- 396

trolled inputs would increase. Furthermore, the C-dimensional 397

problem is small enough for our optimization algorithm, and 398
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Fig. 3. Benchmark network with two on-ramp metering and two speed limits. Each controller has been considered as a player.

the parameter C does not vary as the number of controller399

increases.400

The SFP algorithm of coordinated ramp metering and vari-401

able speed limits in the MPC framework can be presented as402

follows (see Fig. 2 for the schematic description):403

1) Initialization: A set of initial values is randomly chosen404

for each of the ramp meters and speed limits for a given405

control horizon (C). (uinitial
i (1 × C) for i = 1, . . . , N).406

2) Sampling: The control values are arbitrarily drawn from407

the history of previously stored values for each controller408

with equal probability (equal to initial values for the first409

step). (uhistory
i (1 × C) for i = 1, . . . , N).410

3) Optimization: Each controller finds its optimal values411

by minimizing the objective function of (14) over the412

prediction horizon, assuming that all the other controllers413

have taken constant values (drawn from Step 2). The414

METANET model is utilized as the prediction model415

and the SQP algorithm as a numerical optimization416

algorithm to find the optimal controls. u∗
i (1 × C) for417

i = 1, . . . , N .418

4) Store: The new optimal values obtained in Step 3 are419

stored in the history of the players’ decisions.420

5) Stop Condition: Checks whether the convergence of421

the fitness function for each controller has occurred422

(i.e., if the steady-state Nash equilibrium has been423

reached). If yes, then stop and repeat this algo-424

rithm for the next iteration (k + 1); otherwise, go to425

step 2.426

We could say that the decision/control vector u∗(N × C) is427

the Nash equilibrium if, for each controller i ∈ N , u∗
i(1 × C)428

gives the minimum TTS for all players, provided that u∗
−i429

(the decision variables of other controllers) are fixed at their430

optimum values, i.e.,431

u∗
i ∈ arg min J

(
u∗

i ,u
∗
−i

)
.

This means that none of the controllers may change its432

control value to get a lower TTS, which is the condition of the433

Nash equilibrium.434

In this paper, the SFP algorithm in the MPC frame-435

work is designated as the distributed optimization frame-436

work (DOF), whereas the conventional nondecomposed437

optimization is called the centralized optimization frame-438

work (COF).439

Fig. 4. Demand profiles for all the origins (O1, O2, O3).

VII. CASE STUDY 440

This section presents the results of a simulation case study 441

performed on a benchmark network. The performance of the 442

proposed algorithm is demonstrated by comparing the achieved 443

TTS values using the DOF and COF, as well as the computa- 444

tional time for the DOF and COF. 445

A. Network Topology 446

To assess the performance of the proposed approach, we 447

conducted a series of simulations on a freeway network un- 448

der three control options, namely, no control, COF, and DOF 449

(the proposed method). The network consists of three origins, 450

including a main stream and two on-ramps. O1 is the main 451

origin connected to link L1. The freeway section is 10 km long 452

and is divided into ten segments of equal length (see Fig. 3). 453

The freeway link L1 has three lanes with a total capacity of 454

6000 veh/h. The last two segments of link L1 (segments 3 455

and 4) are equipped with VMS, where speed limits are applied. AQ1456

At the end of link L1, a single-lane metered on-ramp (O2) 457

with a capacity of 2000 veh/h is attached. The studied freeway 458

follows via link L2 with three lanes and four segments to link 459

L3. At the end of link L2, another single-lane metered on-ramp 460

(O3) with a capacity of 2000 veh/h is attached. The studied 461

freeway follows via link L3 with three lanes and two segments 462

to destination D1. 463

To prevent the spill-back of queue to the surface street, we 464

limit the maximum queue length at O2 and O3 to 150 and 465
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Fig. 5. Simulation results for the no-control case. (a) Segment traffic density. (b) Segment traffic speed. (c) Segment traffic flow. (d) Origin queue length. (e)
Origin flow.

80 vehicles, respectively. The network parameters are the same466

as the parameters used in [23], i.e.,467

T = 10 s, τ = 18 s

κ = 40 veh/lane/km, ϑ = 60 km2/h

ρmax = 180 veh/lane/km, a1 = a2 = 1.867

ρcrit = 33.5 veh/lane/km, Vfree = 102.

In addition, we assumed that the drivers would obey the control468

speed displayed by speed limiters (α = 0).469

The demand profiles from the origins are shown in Fig. 4.470

The METANET model and the underlying optimization frame-471

work are implemented within the MATLAB software.472

B. Simulation Results473

In the no-control case, when the traffic demands increase in474

on-ramps 1 and 2, congestion occurs and propagates through475

links 1 and 2 (see Fig. 5). Consequently, the density on the 476

main stream increases, and a long queue (approximately 150 477

vehicles) is formed at O1. In this case, the TTS is 3109 veh.h. 478

For the MPC system, the optimal prediction and control 479

horizons were found to be approximately 48 and 36 steps, 480

corresponding to 8 and 6 min, respectively. The time step for 481

control updates was set to 1 min, which means that every 482

minute, optimal control must be computed and applied to the 483

traffic system. The simulation results for MPC with COF are 484

shown in Fig. 6. The speed limits reduced the inflow and density 485

of the critical segment, which resulted in a higher outflow. The 486

TTS under this control was 2796 veh.h, which showed 10.06% 487

improvement compared with the no-control case. 488

The results of the DOF case with the same control parameters 489

used for the previous case are shown in Fig. 7. The TTS in this 490

case was 2605 veh.h, which had an improvement of 16.21% 491

compared with the no-control case and 6.15% to the COF. This 492

result indicates that the DOF could substantially improve the 493

network performance compared with the COF. 494
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Fig. 6. Simulation results for the COF case. (a) Segment traffic density. (b) Segment traffic speed. (c) Segment traffic flow. (d) Origin queue length. (e) Origin
flow. (f) Optimal ramp metering rates. (g) Optimal speed limit values.

Fig. 8 shows the optimal TTS at each control step for the495

COF and DOF approaches. It can be seen that during the496

congested period when the control measures are in effect,497

the TTS values for the DOF case are smaller than those for498

COF, which results in a better overall performance. This may499

also be explained by the formation of queues in on-ramps500

1 and 2 for two cases. In the COF, the proposed control501

has used the capacity of the second on-ramp (80 vehicles)502

for most of the 2.5-h simulation time, whereas in the DOF, 503

the capacity of the first on-ramp (150 vehicles) has mainly 504

been used. These results showed that keeping the vehicles in 505

the first on-ramp has more influence on reducing the TTS. 506

Although no general statement can be made to explain this 507

suboptimal solution achieved by COF, one possible explanation 508

is that, in the COF, a larger search space has to be explored, 509

which degrades the performance of the optimization method. In 510
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Fig. 7. Simulation results for the DOF case. (a) Segment traffic density. (b) Segment traffic speed. (c) Segment traffic flow. (d) Origin queue length. (e) Origin
flow. (f) Optimal ramp metering rates. (g) Optimal speed limit values.

contrast, the DOF keeps the dimension of the decision variables511

fixed.512

In Fig. 9, a sample evolution of the best-reply convergences513

to the Nash equilibrium value is presented. The results depict514

that in a few iterations (seven iterations), the optimal TTS value515

is reached by all players (controllers).516

It should be mentioned that our simulation was performed 517

on a single CPU, whereas in real-time control applications, 518

parallel CPUs could be utilized. Therefore, if we assume equal 519

computational time for each player in the proposed simulation, 520

then the total computational time with multiple CPUs would 521

be one fourth of the computation time with a single CPU. In 522
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Fig. 8. Optimal TTS for the COF and DOF cases at each control step (in
veh.h).

Fig. 9. Evolution of the best-reply convergence.

Fig. 10, the computational time for each control step (on a Pen-523

tium IV 3-GHz processor workstation) is plotted for both cases.524

The average computation time to find the optimal solution in525

the DOF case was near 20 s and, in the worst case, was less526

than 60 s, which is the control time step, whereas for the COF,527

the average time was close to 102 s. Furthermore, it should528

be noted that the computational time for the DOF approach529

appeared to grow slowly as the number of control variables530

increases. This time could further be controlled through parallel531

implementation.532

This improvement in computation time is relative, which533

means that this time reduction is comparable when an identical534

software language and optimization algorithm are used for the535

implementation of the no-control, COF, and DOF cases. Any536

other implementation of the system in different programming537

environment or with different optimization algorithm may lead538

to higher or lower computation time, but the relative time539

reduction is expected to be the same.540

VIII. CONCLUSION AND FUTURE WORK541

In this paper, a game-theory-based approach has been intro-542

duced to address the computational complexity of the integrated543

Fig. 10. Computation time for the COF and DOF simulations at each control
step (in seconds).

and coordinated freeway network-control problem by employ- 544

ing distributed controllers. The proposed method was applied to 545

the problem of optimal ramp metering and variable speed limits 546

in an MPC framework. Based on the simulation results, the 547

proposed method (DOF) achieved better performance in terms 548

of both solution quality and computation time than those for 549

COF. Because of the parallel nature of its solution process, the 550

proposed algorithm can be implemented in parallel in multiple 551

CPUs, making it potentially feasible for real-time implementa- 552

tion in large-size freeway networks. 553

For future works, we will be focusing on testing the proposed 554

method for larger networks, including more traffic controllers, 555

to investigate changes in the convergence process as the number 556

of traffic controllers increases. 557
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An Efficient Optimization Approach to Real-Time
Coordinated and Integrated Freeway Traffic Control

1

2

Amir Hosein Ghods, Student Member, IEEE, Liping Fu, and Ashkan Rahimi-Kian, Senior Member, IEEE3

Abstract—This paper tackles the problem of real-time optimal4
control of traffic flow in a freeway network deployed with co-5
ordinated and integrated traffic controllers. One promising ap-6
proach to this problem is casting the underlying dynamic control7
problem in a model predictive framework. The challenge is that8
the resulting optimization problem is computationally intractable9
for online applications in a network with a large number of10
controllers. In this paper, a game-theoretic approach with distrib-11
uted controllers is proposed to address the foregoing issue. The12
efficiency of the proposed method is tested for a coordinated ramp13
metering and variable-speed limit control applied to a stretch of14
freeway network. The parallel nature of the optimization algo-15
rithm makes it suitable for solving large-scale problems with high16
accuracy. The speed and accuracy of the proposed solution ap-17
proach are examined and compared with that of the conventional18
optimization method in a case study to demonstrate its superior19
performance.20

Index Terms—Distributed controllers, game theory, model pre-21
dictive control (MPC), parallel optimization, ramp metering,22
speed limit control.23

I. INTRODUCTION24

S EVERAL methods have been developed to improve the25

performance of freeway networks. Among them, control26

strategies such as ramp metering, speed limits, and route rec-27

ommendation are recognized as the most effective ways to28

relieve the freeway traffic congestion. Furthermore, the latest29

advances in computers and communication technologies have30

made it feasible to implement network-wide multiple traffic31

control systems, as opposed to single local control schemes.32

Intuitively, for a given traffic network, more controllers could33

result in better performance. Nevertheless, for a network-34

wide implementation, the amount of data and the computa-35

tional complexity of the underlying control algorithms quickly36
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increase as the number of control measures increases. There- 37

fore, in general, there exists a tradeoff between the quality 38

of the control method and the amount of information and 39

computational resources required to achieve that quality. 40

Traffic control strategies can generally be classified into three 41

categories. The first category consists of offline or open-loop 42

strategies, in which only historical data are used in deriving 43

the controls. A good example of open-loop strategies is the 44

fixed-time ramp metering [1], in which the control strategies 45

are predetermined for a particular time of day by solving a 46

linear programming problem based on historical demand. A 47

more sophisticated strategy in this category is the nonlinear 48

optimal ramp-metering method [2], which attempts to minimize 49

an objective function for the whole network. One of the major 50

drawbacks of this control strategy is its high sensitivity to 51

inaccuracies in the predicted traffic demands, traffic patterns, 52

and incidents. 53

The second category contains the reactive or close-loop 54

methods, which derive the control decisions based on real- 55

time data from traffic sensors such as inductive loop detectors. 56

Generally, this type of controller aims at keeping the freeway 57

conditions as close to a prespecified target state as possible. 58

Reactive ramp metering algorithms such as demand–capacity 59

strategy [3] and ALINEA [4] are popular in this category. 60

These controls do not incorporate any systematic optimization 61

procedure to directly minimize the objective function and are 62

mostly heuristic in nature, and their performance depends on 63

the appropriate selection of the control parameters. Reference 64

[5] provides a comprehensive review of the various ramp- 65

metering methods in these two categories. 66

The third category includes control strategies commonly 67

called proactive or predictive control methods that make use 68

of both offline and online information to predict the future state 69

of the underlying network and then control the system accord- 70

ingly. The goal of these strategies is to find the optimal control 71

over a given horizon based on a predefined objective function. 72

It operates in a feedback adaptive fashion by which it takes new 73

observed states and disturbances into account through a predic- 74

tion model. These control methods are commonly referred to 75

as receding horizon control or model predictive control (MPC). 76

The MPC has been applied in ramp metering [6], variable speed 77

limits [7], combined ramp metering and variable speed limit 78

control [8], and combined dynamic route guidance and ramp- 79

metering control [9]. 80

Despite the obvious advantages of online strategies with opti- 81

mization frameworks, such as the MPC, they have the drawback 82

that their computational complexity quickly increases by the 83

number of control inputs. This is particularly problematic for 84

1524-9050/$26.00 © 2010 IEEE
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traffic-control systems where a closed-form optimal control85

signal may not explicitly be derived, and for each control86

interval, an online nonlinear programming technique must be87

implemented. For instance, Di Febbraro et al. [10] proposed to88

apply artificial neural networks as an offline control for optimal89

freeway traffic control instead of using online optimization for90

their receding horizon approach because they found that the91

dynamics of the system change faster than the speed of the92

computing system. In another case [8], it was suggested that93

a hierarchical control scheme be tested that was decomposing94

the large traffic network into small subnetworks with minimum95

interaction and then solving each problem locally. In [11], a96

hierarchical control structure is proposed to the coordinated97

ramp-metering problem arising in the Amesterdam ring road.98

The problem was formulated with a nonlinear macroscopic99

traffic model. The solution method proposed in that work100

was claimed to be fast enough for real-time implementation;101

however, it is unknown whether this solution approach could be102

extended to solve problems with more sophisticated controllers103

(e.g., speed limits) and input/state constraints. Despite the com-104

putational challenges, the potential of online control strategies105

like the MPC is very promising, and the remaining challenge is106

to develop a solution method that can feasibly be implemented107

in a real-world setting.108

In this paper, we consider the problem of applying the MPC109

control framework to the congestion control problem of a free-110

way network equipped with ramp metering and variable speed111

limits. A solution algorithm from game theory is proposed to112

find the optimal solutions for the optimization part of the MPC,113

which has the potential to make the real-time congestion control114

computationally tractable even for large traffic networks. A115

macroscopic traffic flow model is used as the prediction model116

of the real traffic system. This paper is organized as follows: In117

Section II, the problem description is presented. In Section III,118

the basics of the MPC are introduced. In Section IV, the traffic119

flow model (prediction model) is introduced. In Section V, the120

problem formulation is proposed. The game-theoretic approach121

is explained in Section VI. The proposed method is applied to122

a benchmark problem in Section VII. Finally, conclusions are123

stated in Section VIII.124

II. INTEGRATED AND COORDINATED CONTROL PROBLEM125

We consider the problem of finding the best control settings126

for a group of controllers in a traffic network consisting of a127

set of ramp meters and variable speed limit signs. The control128

objective is to minimize the system-wide total time spent (TTS)129

by all vehicles in the freeway network. Ramp metering is the130

most widely used freeway traffic-control method around the131

world. However, this method will lose its effectiveness as the132

congestion level increases. Changing the speed limit through133

variable speed limit signs could partially address this issue134

and improve the effectiveness of the ramp-metering system,135

as shown in [8]. The speed limiters located just before the136

bottleneck on-ramp can help reduce the outflow of controlled137

segments so that there will be some space left to accommodate138

the traffic from the on-ramp. This way, the traffic flow in the139

on-ramp area could be kept near the capacity, and the duration140

of breakdowns could be reduced. Therefore, a combination of 141

ramp metering and variable speed limit control has the potential 142

to achieve better performance than when they are implanted 143

separately. 144

Coordination among different controllers that work together 145

is an essential task. For instance, a controller at one spot of a 146

freeway network may mitigate a local congestion problem but 147

may induce congestion at another location on the freeway. Be- 148

sides using the global data, the prediction of network evolution 149

could be valuable since the effect of control can be seen after a 150

time delay. 151

As the number of ramp meters and speed control limits 152

increases, the size of the solution vector grows rapidly. For 153

example, to find an optimal solution for N controllers including 154

ramp meters and speed limiters using the MPC approach, 155

(which will be explained in the next section), every controller 156

must find C optimal values at each control time step. There- 157

fore, the solution to the optimal control problem is an N × C 158

variable matrix. If the problem is formulated as an integer- 159

programming problem with S discrete permissible values for 160

each N × C variable matrix, then SN×C values have to be 161

enumerated and evaluated to find the global optimal solution. 162

Although the problem could also be formulated as a continuous 163

nonlinear programming problem, the resulting problem is likely 164

to be nonconvex in nature in that finding the global optimum so- 165

lution would require an exhaustive search of the whole solution 166

space. 167

III. MODEL PREDICTIVE CONTROL 168

The MPC is an advanced control framework that was orig- 169

inally developed for industrial process control (see [12] and 170

[13]). The MPC is a distinguished control model in terms of 171

its capability to deal with various system constraints in an 172

optimization framework. The core idea of the MPC is its use 173

of a dynamic model to predict the future behavior of the system 174

at each optimization step. The goal is to find the desired control 175

inputs such that a predefined objective function is minimized or 176

maximized. In this paper, we have utilized MPC as an online 177

method to optimally control coordination of speed limits and 178

ramp metering with the objective of minimizing the TTS with 179

system states being predicted by a macroscopic freeway model. 180

The following section provides a brief description of the MPC 181

framework introduced in [14]. 182

We consider a control system with N controllers over a 183

specific time horizon. The time horizon is divided into P 184

large control intervals, each subdivided into M small inter- 185

vals (called system simulation steps). It is assumed that over 186

each control interval, the control variables are kept the same, 187

whereas the system state changes by the simulation step. Let 188

kc be the index for large intervals (kc = 1, 2, . . . , P ) and k for 189

all the subintervals (k = 1, 2 . . . , MP ). The transition of the 190

system state can be expressed as follows: 191

x(k + 1) = f (x(k),u(k),d(k))

where x(k), u(k), and d(k) are vectors representing the system 192

state, the control input, and the disturbance at time k. At each 193
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control step kc, a new optimization is performed to compute the194

optimal control decisions, e.g.,195

u(kc) =

⎡
⎢⎢⎣

u1(kc) u1(kc + 1) · · · u1(kc + P − 1)
...

uN (kc) uN (kc + 1) · · · uN (kc + P − 1)

⎤
⎥⎥⎦

for the time period of [1.2, . . . , P ], in which P is the prediction196

horizon.197

To reduce the computational complexity, a control hori-198

zon C(C < P ) is usually defined to represent the time199

horizon over which the control signal is considered to be200

fixed, i.e.,201

u(kc) = u(C − 1) for kc > C.

Therefore, for N controllers, the N × C vector of optimal202

controls would be203

u∗(kc) =

⎡
⎢⎢⎣

u∗
1(kc) u∗

1(kc + 1) · · · u∗
1(kc + C − 1)

...

u∗
N (kc) u∗

N (kc + 1) · · · u∗
N (kc + C − 1)

⎤
⎥⎥⎦ .

Only the first optimal control signal u∗
i (kc), i = 1, 2, . . . , N204

(first column) is applied to the real system, and after shifting205

the prediction and control horizon one step forward with the206

current observed states of the real system to the model, the207

process is repeated. This feedback is necessary to correct any208

prediction errors and system disturbances that may deviate209

from model prediction. Since we have to work with a non-210

linear system (traffic model), in each control time step kc, a211

nonlinear programming has to be solved to find the N × C212

optimal solutions before reaching the next control time step213

(kc + 1).214

It should be pointed out that the control parameters P and C215

need to be selected appropriately. Choosing a large prediction216

and control horizon will increase the computational demands217

due to the increased number of optimization variables. On the218

other hand, using a short prediction and control horizon may219

turn the control strategy into a reactive model and thus degrade220

its effectiveness.221

In the following sections, we introduce how the system state222

equations are modeled using a dynamic traffic flow model and223

how the MPC can be cast into a game-theoretical framework224

and solved efficiently.225

IV. TRAFFIC-FLOW MODEL226

The traffic-flow model adopted here is the destination in-227

dependent METANET model (see [2] for more details) to-228

gether with the extended model for speed limits presented229

in [8].230

The METANET is a macroscopic traffic model that is dis-231

crete in both space and time. The model represents the network232

by a directed graph with a set of links corresponding to freeway233

Fig. 1. METANET model. Link and node configuration.

stretches and a set of nodes, as illustrated in Fig. 1. Each link 234

has uniform characteristics i.e., no on-ramp or off-ramp and 235

no major changes in geometry. The nodes of the graph are 236

placed between links, where the major change in road geometry 237

occurs, such as on-ramps and off-ramps. A freeway link (m) 238

is divided into (Nm) segments (indexed by i) of length (lm,i) 239

and by the number of lanes (nm). Each segment (i) of link 240

(m) at time instant t = kT , where T is the time step used for 241

simulation, and k = 0, . . . ,K, is macroscopically characterized 242

by its traffic density ρm,i(k) (in vehicles per lane per kilometer), 243

mean speed vm,i(k) (in kilometers per hour), and traffic volume 244

qm,i(k) (in vehicles per hour). Table I describes the notations 245

related to the METANET model. 246

The traffic stream models that capture the evolution of traf- 247

fic on each segment at each time step are shown in (1)–(8) 248

(see Table II). The node equations that represent the relation 249

between connected links are given in (9)–(12) (see Table III), 250

which show how the entering traffic flow to a node is distributed 251

among the emanating links. 252

Using the aforementioned equations, the nonlinear traffic 253

dynamics can be expressed as follows: 254

x(k + 1) = f (x(k),u(k),d(k)) (13)

where x(k) is the state vector of the system, that is, flow rate 255

(qm,i(k)), speed (vm,i(k)), density (ρm,i(k)), and queue length 256

of origins wo(k); u(k) is the vector of control inputs, including 257

the ramp metering rates and the speed limits; and d(k) is the 258

disturbance vector at simulation step k. 259

Based on x(k), u(k), and d(k), the future evolution of 260

the traffic system [x̂(k + 1), . . . , x̂(k + MP − 1)] can be pre- 261

dicted by the METANET model. 262

V. PROBLEM FORMULATION 263

With the definitions and system state equations introduced 264

in the previous section, we can now present the formula- 265

tion of the MPC optimization problem. The optimal con- 266

trol problem includes the following two sets of decision 267

variables: 268

1) vi(j): variable speed limits for j ∈ [k, . . . , k + C − 1] 269

and i ∈ Ispeed, where Ispeed is the set of speed limits that 270

are presented in the freeway network; 271

2) ro(j): ramp-metering rates for j ∈ [k, . . . , k + C − 1] 272

and o ∈ Oramp, where Oramp is the set of controlled on- 273

ramps where ramp metering is presented. 274
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TABLE I
NOTATIONS USED IN THE METANET MODEL

The objective function used in this paper is the TTS spent by275

all vehicles, as defined in276

TTS = J(v, r)

= T

k+P−1∑
j=k

⎧⎨
⎩

∑
m,i

ρm,i(j)lm,jnm +
∑

o

wo(j)

⎫⎬
⎭

+
k+P−1∑

j=k

⎧⎨
⎩αramp

∑
o∈Oramp

(ro(j) − ro(j − 1))2

+ αspeed

∑
i∈Ispeed

(
vi(j) − vi(j − 1)

vfree

)2
⎫⎬
⎭

+ αqueue

∑
o∈Oramp

(max(wo − wmax))
2 . (14)

The first two terms in (14) correspond to the main stream 277

and the origins’ queues, respectively. The second and third 278

terms, which are weighted by nonnegative weighting fac- 279

tors, enable the control strategy to penalize abrupt changes 280

in the ramp metering and speed-limit-control decisions, and 281

the last term with a nonnegative weighting factor penalizes 282

queue lengths larger than the on-ramp capacity for keep- 283

ing the queue lengths within the permissible limit of the 284

on-ramps. 285

The MPC optimization problem can therefore be formulated 286

as follows in an abbreviated form: 287

min {J(v, r) : v ∈ V , r ∈ R}

s.t. Equations (1)–(12) (15)

where for N1 speed limits and N2 ramp meters, v(N1 × 288

C) and r(N2 × C) are decision variables, respectively, 289

(N1 + N2 = N), and V × R is the feasible search space. We 290
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TABLE II
LINK EQUATIONS AND DESCRIPTIONS

TABLE III
NODE EQUATIONS AND DESCRIPTIONS

call the whole decision variable vector u(N × C), which is as291

follows:292

u(kc) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1(kc) v1(kc + 1) · · · v1(kc + C − 1)
...

vN1(kc) vN1(kc + 1) · · · vN1(kc + C − 1)
r1(kc) r1(kc + 1) · · · r1(kc + C − 1)

...
rN2(kc) rN2(kc + 1) · · · rN2(kc + C − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Because of the nonlinearity of the traffic system states (1)–(12)293

and the objective function, this problem is a nonlinear pro-294

gramming with N × C decision variables. The problem is com- 295

monly solved using sequential quadratic programming (SQP) 296

algorithm [8]. However, the SQP algorithm is viable only for 297

small problems, and its optimality is not guaranteed. Therefore, 298

to find a sufficiently good solution in a reasonable time for 299

this problem, we apply the game theory that has successfully 300

been applied to solve large-size optimization problems in other 301

fields. 302

VI. GAME-THEORETIC APPROACH 303

The game theory was first introduced in the economy to 304

find the market equilibrium when multiple firms compete with 305
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each other to sell or buy some goods. Game theory studies306

how rational decision makers (players) choose their strategies307

from the sets of decisions that depend on the strategies of308

other players. In other words, each player has a payoff function309

that is affected by the strategy of the player itself and the310

strategies of other players. There are two types of strategies311

defined in game theory: 1) If a player has a dominant strategy312

or knows what his/her opponent will do in the next step, then313

he/she could take a strategy with probability 1, which is called314

pure strategy. 2) However, in incomplete information games315

where players do not have dominant strategies or are not sure316

about the next step decisions of their rivals, they may assign317

different probabilities to their own and their rivals’ decision318

sets, and their strategy vectors are called mixed strategies319

(for more details regarding game theory and applications, see320

[15] and [16]).321

The basic idea of using game theory in this paper for freeway322

optimal traffic control is to decompose the whole optimiza-323

tion problem into a number of suboptimization problems with324

smaller dimensions and to solve them individually but in a325

coordinated way. This is similar to turning the optimization326

problem into a sequential and coordinated game that is played327

by a number of players with identical payoffs. In our case, each328

of the N controllers in the traffic network is considered as a329

player in a game, and the TTS of all vehicles in the network is330

considered the objective function of all the players. Therefore,331

the optimal coordination of the ramp metering and variable332

speed limits is presented as a game of identical interests.333

Since the players (traffic controllers) decide simultaneously334

and try to chose their best strategies in response to the pre-335

dicted strategies of their rivals (other network controllers), the336

solution vector of such game represents a state called Nash337

equilibrium, in which the players cannot improve their payoffs338

by changing their strategies unilaterally. The Nash equilibrium339

solution can be found through a well-known algorithm called340

fictitious play (FP) [17]. The FP is an interactive process in341

which the players find their best strategies by predicting the342

rivals’ strategies based on the probability distributions of their343

past decisions. In general, the FP is not guaranteed to converge344

to the Nash equilibrium; however, it does converge to the Nash345

equilibrium in games of identical interest or common objective346

(in our case TTS) [18]. Virtually, the optimization problems347

may be viewed as a game of identical objectives in which the348

Nash solution has some optimality properties; as a result, the349

FP has recently become increasingly popular as an optimiza-350

tion tool.351

The classical form of FP is computationally extensive in352

practice. Reference [19] proposed a modified form of it called353

sample FP (SFP) that is similar to the original FP with a dif-354

ference that the best strategies are computed against a random355

sample from the history of the past decisions of the rivals356

instead of the predicted decisions based on their probability357

distributions. The SFP algorithm is useful to solve the prob-358

lem of form (15), particularly when the objective function is359

evaluated through a black-box module requiring significant360

computational efforts for each function evaluation similar to361

our case (see [19] for more details). In the SFP method, each362

player finds its best strategy by assuming that other players363

Fig. 2. Schematic diagram of MPC with SFP optimization method.

play known strategies drawn randomly from the history of their 364

past plays. Therefore, players learn other players’ strategies 365

iteratively. The convergence of the SFP with the increasing 366

number of iterations has also been proven in [19]. The SFP 367

algorithm has been applied for solving the dynamic traffic- 368

assignment problem [20], the communication protocol design 369

[21], and the signalized intersection problem [22]. 370

The SFP algorithm has the following steps, as reported 371

in [22]: 372

1) Initialization: A set of initial strategies is randomly cho- 373

sen for each player and stored in the history. 374

2) Sampling: A strategy arbitrarily drawn from the history 375

of plays for each player with equal probability. 376

3) Best reply: Each player computes his/her best reply or 377

strategy, assuming that other players play the strategies 378

drawn in the previous step. 379

4) Store: The best replies obtained in Step 3 are stored in the 380

history of plays. 381

5) Stop Condition: Check whether the stopping criterion 382

is met (for example, if the solution vector has reached 383

the steady-state Nash equilibrium); if not, then go to 384

Step 2. 385

The most important feature of the SFP algorithm is that the 386

best-reply computation can be done in parallel for all players 387

simultaneously. This makes the algorithm feasible for parallel 388

implementation, that is, the N , C-dimensional optimization 389

problems can be solved in parallel. It is also possible to decom- 390

pose the problem into much smaller subproblems by assuming 391

the C control signal of each controller as an individual player. 392

Accordingly, we would have N × C players, each with a 1-D 393

optimization problem. We omitted this configuration because 394

in this scheme the divergence time associated with N × C 395

players might have become problematic as the number of con- 396

trolled inputs would increase. Furthermore, the C-dimensional 397

problem is small enough for our optimization algorithm, and 398
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Fig. 3. Benchmark network with two on-ramp metering and two speed limits. Each controller has been considered as a player.

the parameter C does not vary as the number of controller399

increases.400

The SFP algorithm of coordinated ramp metering and vari-401

able speed limits in the MPC framework can be presented as402

follows (see Fig. 2 for the schematic description):403

1) Initialization: A set of initial values is randomly chosen404

for each of the ramp meters and speed limits for a given405

control horizon (C). (uinitial
i (1 × C) for i = 1, . . . , N).406

2) Sampling: The control values are arbitrarily drawn from407

the history of previously stored values for each controller408

with equal probability (equal to initial values for the first409

step). (uhistory
i (1 × C) for i = 1, . . . , N).410

3) Optimization: Each controller finds its optimal values411

by minimizing the objective function of (14) over the412

prediction horizon, assuming that all the other controllers413

have taken constant values (drawn from Step 2). The414

METANET model is utilized as the prediction model415

and the SQP algorithm as a numerical optimization416

algorithm to find the optimal controls. u∗
i (1 × C) for417

i = 1, . . . , N .418

4) Store: The new optimal values obtained in Step 3 are419

stored in the history of the players’ decisions.420

5) Stop Condition: Checks whether the convergence of421

the fitness function for each controller has occurred422

(i.e., if the steady-state Nash equilibrium has been423

reached). If yes, then stop and repeat this algo-424

rithm for the next iteration (k + 1); otherwise, go to425

step 2.426

We could say that the decision/control vector u∗(N × C) is427

the Nash equilibrium if, for each controller i ∈ N , u∗
i(1 × C)428

gives the minimum TTS for all players, provided that u∗
−i429

(the decision variables of other controllers) are fixed at their430

optimum values, i.e.,431

u∗
i ∈ arg min J

(
u∗

i ,u
∗
−i

)
.

This means that none of the controllers may change its432

control value to get a lower TTS, which is the condition of the433

Nash equilibrium.434

In this paper, the SFP algorithm in the MPC frame-435

work is designated as the distributed optimization frame-436

work (DOF), whereas the conventional nondecomposed437

optimization is called the centralized optimization frame-438

work (COF).439

Fig. 4. Demand profiles for all the origins (O1, O2, O3).

VII. CASE STUDY 440

This section presents the results of a simulation case study 441

performed on a benchmark network. The performance of the 442

proposed algorithm is demonstrated by comparing the achieved 443

TTS values using the DOF and COF, as well as the computa- 444

tional time for the DOF and COF. 445

A. Network Topology 446

To assess the performance of the proposed approach, we 447

conducted a series of simulations on a freeway network un- 448

der three control options, namely, no control, COF, and DOF 449

(the proposed method). The network consists of three origins, 450

including a main stream and two on-ramps. O1 is the main 451

origin connected to link L1. The freeway section is 10 km long 452

and is divided into ten segments of equal length (see Fig. 3). 453

The freeway link L1 has three lanes with a total capacity of 454

6000 veh/h. The last two segments of link L1 (segments 3 455

and 4) are equipped with VMS, where speed limits are applied. AQ1456

At the end of link L1, a single-lane metered on-ramp (O2) 457

with a capacity of 2000 veh/h is attached. The studied freeway 458

follows via link L2 with three lanes and four segments to link 459

L3. At the end of link L2, another single-lane metered on-ramp 460

(O3) with a capacity of 2000 veh/h is attached. The studied 461

freeway follows via link L3 with three lanes and two segments 462

to destination D1. 463

To prevent the spill-back of queue to the surface street, we 464

limit the maximum queue length at O2 and O3 to 150 and 465
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Fig. 5. Simulation results for the no-control case. (a) Segment traffic density. (b) Segment traffic speed. (c) Segment traffic flow. (d) Origin queue length. (e)
Origin flow.

80 vehicles, respectively. The network parameters are the same466

as the parameters used in [23], i.e.,467

T = 10 s, τ = 18 s

κ = 40 veh/lane/km, ϑ = 60 km2/h

ρmax = 180 veh/lane/km, a1 = a2 = 1.867

ρcrit = 33.5 veh/lane/km, Vfree = 102.

In addition, we assumed that the drivers would obey the control468

speed displayed by speed limiters (α = 0).469

The demand profiles from the origins are shown in Fig. 4.470

The METANET model and the underlying optimization frame-471

work are implemented within the MATLAB software.472

B. Simulation Results473

In the no-control case, when the traffic demands increase in474

on-ramps 1 and 2, congestion occurs and propagates through475

links 1 and 2 (see Fig. 5). Consequently, the density on the 476

main stream increases, and a long queue (approximately 150 477

vehicles) is formed at O1. In this case, the TTS is 3109 veh.h. 478

For the MPC system, the optimal prediction and control 479

horizons were found to be approximately 48 and 36 steps, 480

corresponding to 8 and 6 min, respectively. The time step for 481

control updates was set to 1 min, which means that every 482

minute, optimal control must be computed and applied to the 483

traffic system. The simulation results for MPC with COF are 484

shown in Fig. 6. The speed limits reduced the inflow and density 485

of the critical segment, which resulted in a higher outflow. The 486

TTS under this control was 2796 veh.h, which showed 10.06% 487

improvement compared with the no-control case. 488

The results of the DOF case with the same control parameters 489

used for the previous case are shown in Fig. 7. The TTS in this 490

case was 2605 veh.h, which had an improvement of 16.21% 491

compared with the no-control case and 6.15% to the COF. This 492

result indicates that the DOF could substantially improve the 493

network performance compared with the COF. 494
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Fig. 6. Simulation results for the COF case. (a) Segment traffic density. (b) Segment traffic speed. (c) Segment traffic flow. (d) Origin queue length. (e) Origin
flow. (f) Optimal ramp metering rates. (g) Optimal speed limit values.

Fig. 8 shows the optimal TTS at each control step for the495

COF and DOF approaches. It can be seen that during the496

congested period when the control measures are in effect,497

the TTS values for the DOF case are smaller than those for498

COF, which results in a better overall performance. This may499

also be explained by the formation of queues in on-ramps500

1 and 2 for two cases. In the COF, the proposed control501

has used the capacity of the second on-ramp (80 vehicles)502

for most of the 2.5-h simulation time, whereas in the DOF, 503

the capacity of the first on-ramp (150 vehicles) has mainly 504

been used. These results showed that keeping the vehicles in 505

the first on-ramp has more influence on reducing the TTS. 506

Although no general statement can be made to explain this 507

suboptimal solution achieved by COF, one possible explanation 508

is that, in the COF, a larger search space has to be explored, 509

which degrades the performance of the optimization method. In 510
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Fig. 7. Simulation results for the DOF case. (a) Segment traffic density. (b) Segment traffic speed. (c) Segment traffic flow. (d) Origin queue length. (e) Origin
flow. (f) Optimal ramp metering rates. (g) Optimal speed limit values.

contrast, the DOF keeps the dimension of the decision variables511

fixed.512

In Fig. 9, a sample evolution of the best-reply convergences513

to the Nash equilibrium value is presented. The results depict514

that in a few iterations (seven iterations), the optimal TTS value515

is reached by all players (controllers).516

It should be mentioned that our simulation was performed 517

on a single CPU, whereas in real-time control applications, 518

parallel CPUs could be utilized. Therefore, if we assume equal 519

computational time for each player in the proposed simulation, 520

then the total computational time with multiple CPUs would 521

be one fourth of the computation time with a single CPU. In 522
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Fig. 8. Optimal TTS for the COF and DOF cases at each control step (in
veh.h).

Fig. 9. Evolution of the best-reply convergence.

Fig. 10, the computational time for each control step (on a Pen-523

tium IV 3-GHz processor workstation) is plotted for both cases.524

The average computation time to find the optimal solution in525

the DOF case was near 20 s and, in the worst case, was less526

than 60 s, which is the control time step, whereas for the COF,527

the average time was close to 102 s. Furthermore, it should528

be noted that the computational time for the DOF approach529

appeared to grow slowly as the number of control variables530

increases. This time could further be controlled through parallel531

implementation.532

This improvement in computation time is relative, which533

means that this time reduction is comparable when an identical534

software language and optimization algorithm are used for the535

implementation of the no-control, COF, and DOF cases. Any536

other implementation of the system in different programming537

environment or with different optimization algorithm may lead538

to higher or lower computation time, but the relative time539

reduction is expected to be the same.540

VIII. CONCLUSION AND FUTURE WORK541

In this paper, a game-theory-based approach has been intro-542

duced to address the computational complexity of the integrated543

Fig. 10. Computation time for the COF and DOF simulations at each control
step (in seconds).

and coordinated freeway network-control problem by employ- 544

ing distributed controllers. The proposed method was applied to 545

the problem of optimal ramp metering and variable speed limits 546

in an MPC framework. Based on the simulation results, the 547

proposed method (DOF) achieved better performance in terms 548

of both solution quality and computation time than those for 549

COF. Because of the parallel nature of its solution process, the 550

proposed algorithm can be implemented in parallel in multiple 551

CPUs, making it potentially feasible for real-time implementa- 552

tion in large-size freeway networks. 553

For future works, we will be focusing on testing the proposed 554

method for larger networks, including more traffic controllers, 555

to investigate changes in the convergence process as the number 556

of traffic controllers increases. 557
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